i J - PULSED OPERATION OF A HIGH - POWER AMPLIFIER WITH COMPLEX LOAD IMPEDANCE

نویسندگان

  • J. Cunningham
  • J. G. Skalnik
چکیده

In several reports issued previously, a theoretical analysis has been given for the steady-state operation of a vacuum-tube power amplifier with a complex load impedance* This theoretical work was checked experimentally with amplifiers operating in the steady state at low power levels. One application of an amplifier which sometimes must operate with a complex load impedance is in naval sonar equipment* Such a sonar amplifier produces short pulses of high-frequency energy at power levels that are quite high. In the accompanying report is given a description of tests mado using the amplifier from a Type XQHB sonar system. Experimental measurements were made on the amplifier and compared with characteristics of the operation predicted from the theoretical analysis. Agreement between experiment and prediction is moderately good. Reasons for disagreement Include the difficulty of experimental measurement with pulsed operation, and the fact that the assumptions used in the theory are satisfied only reasonably well by the amplifier. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study and Analysis of A Simple Self Cascode Regulated Cascode Amplifier

This article proposed a simple self cascode RGC amplifier configuration to increase the gain and bandwidth. The cascode amplifier eliminates the miller capacitance between input and output and facilitates high gain, high input and output impedance with high bandwidth. However, the cascode amplifier requires relatively high supply voltage for proper operation and it decreases the output voltage ...

متن کامل

An Ultra High CMRR Low Voltage Low Power Fully Differential Current Operational Amplifier (COA)

this paper presents a novel fully differential (FD) ultra high common mode rejection ratio (CMRR) current operational amplifier (COA) with very low input impedance. Its FD structure that attenuates common mode signals over all stages grants ultra high CMRR and power supply rejection ratio (PSRR) that makes it suitable for mixed mode and accurate applications. Its performance is verified by HSPI...

متن کامل

Class-E Power Amplifiers for Pulsed Transmitters

Nowadays the main driving parameters for the radio transmitter research are: energy efficiency, frequency re-configurability and integration. Pulsed transmitter architectures have attracted large interest in the recent years due to their potential to meet these demands. In pulsed transmitters, a highly efficient switch mode power amplifier (SMPA) is used in conjunction with a pulse modulator to...

متن کامل

AlGaN/GaN HFET Power Amplifier Integrated With Microstrip Antenna for RF Front-End Applications

In this paper, a high-efficiency and compact AlGaN/GaN heterojunction field-effect transistor (HFET) power amplifier integrated with a microstrip antenna at 7.25 GHz is presented for RF front-end circuit applications. A microstrip circular sector antenna is employed as both a radiator and frequency-dependent output load. Higher order harmonics from the HFET in nonlinear operation are reactively...

متن کامل

A Low Power Low Voltage Rail to Rail Constant gm Differential Amplifier with 150 dB CMRR and Enhanced Frequency Performance

This paper proposes a low voltage (±0.55V supply voltage) low power (44.65µW) high common mode rejection ratio (CMRR) differential amplifier (d.a.) with rail to rail input common mode range (ICMR), constant transconductance (gm) and enhanced frequency performance. Its high performance is obtained using a simple negative averaging method so that it cancels out the common mode input signals at th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009